A Latency Taxonomy
and Two Opportunities

Joe Touch
Postel Center Director, USC/ISI
Research Associate Prof., USC CS & EE/Systems
Latency

“Everybody talks about the speed of light, but nobody ever does anything about it.”
– JT, 1988 (0.79 Gsec ago)

• *The* fundamental metric of computing and communication
 – All performance is measured as delay between a question and an answer
 – Everything else is just a means to an end
Proposed Latency Taxonomy

• Measure by impact on the latency budget
 …focus on the reason/mechanism of delay
 – Primary causes – sources consume budget
 – Primary fixes – mitigations reduce source impact

• Consider summary impact
 – Defines limits of improvement

• Ignores:
 – Location
 – Owner
 – “Layer” (when inside a protocol stack)
 – Origin (config., implementation, algorithm, etc.)
Basic Definitions

• Latency budget
 – Hard vs. soft
 • Compares penalty for exceeding
 – Biological vs. computational derivation
 • Determines the expected deadline

• Latency cost
 – Sources – increase cost
 – Mitigations – reduce cost
Sources

• **Generation:**
 – Delay between physical event and availability of data.
 – Physical (audio freq.), source format (video frame), storage (RAM, disk)

• **Transmission:**
 – Inherent in propagating a signal.
 – Signal propagation, initial signal encoding (parallel/serial, striping, bit/symbol)
Sources...

• Processing:
 – Computational translation.
 – Forward, encap/decap, NAT, encrypt, auth., compress, error coding, signal translation

• Multiplexing:
 – Delays needed to support sharing.
 – Shared channel acquisition, output queuing, connection establishment

• Grouping:
 – Reduces frequency of control information and processing.
 – Packetization, message aggregation
Mitigation Approach

• Changes in resources / goals
 – Burn bandwidth, memory, possibly CPU
 – Consider energy impact

• Changes in cost/benefit
 – Costly resources now ‘free’
 • BW, CPU, memory
 – Cost of previously ‘free’ resources
 • CPU, BW (considering energy)
Specific Mitigations

• Relocation
 – Move the endpoints closer (reduces transmission impact)
 – E.g., offload, zero-copy, content distribution centers

• Speedup
 – Increase operations per unit time (reduces processing impact)
 – E.g., faster processor, higher BW path
Specific Mitigations...

- **Dedication**
 - Reserve exclusive resources (reduces *multiplexing* impact)
 - *E.g.*, reserved BW, dedicated circuits, separate network / security processors

- **Partitioning**
 - Split group into individual components (reduces *grouping* impact)
 - Split circuit into packets, split large packets into small cells
General Mitigations

• “Wait loss”
 – Avoid by omission or substitution (reduces impact of all sources)
 – E.g., MPLS, TCP Nagle, AQM, RED

• Anticipation
 – Proactive communication (hides the impact of all sources)
 – E.g., caching, T/TCP, persist-HTTP, ‘Prefetching the means’, TCP control block sharing
Two Opportunities

• Small packets
 – Intermediate between circuit/IP and IP/cell
 – Reduces grouping latency
 – Increases BW, side effects of reordering, *etc.*

• Push anticipation
 – Decouple sender/receiver interaction
 – Latency stays the same, but happens earlier and is thus “hidden”
 – Increases BW, receiver work
Latency Resources

latency.org

(being updated!)