Low delay Congestion Control

- **Why**
 - Interactive Media (Video, VoIP, RTCweb etc)
 - Delay sensitive data (Safety Monitoring, Financial info, etc)
 - Performance improvements (e.g. Web, Apps etc)
 - Low delay usually means low loss
 - This is significant at lower bit rates as TCP’s rate is approximately inversely proportional to the loss rate => higher loss rate.

- **How**
 - Thread a balance between latency and throughput
 - Minimise path latency
 - Maximise throughput
 - Other issues
 - Packet size
 - Packet pacing
 - Layer 2 cross-layer information
 - Application limited
Metrics: Latency Signals

- Metrics
 - Packet Loss
 - Tells us Queue is full (or AQM has dropped packet)
 - Or Layer 2 losses
 - Loss Differentiation Techniques (e.g. delay trends)
 - Packet Delay
 - RTT/One Way Delay
 - Packet Delay Variance, Jitter, Delay Gradient

- Filtering
 - Minima, Mean, EWMA, Kalman, etc
 - Beware of filter's operation with differing packet rates/sizes
Self-fairness

- Shared knowledge of latency signals with same flows
 - Common measurement of latency signals

- Shared knowledge of latency signals with all flows
 - Have an understanding of metrics relevant to other flow types
TCP/Loss-based-cc competition

- Utilise shared knowledge of latency signals
 - Know when to fall back to delay-based operation once a competing loss-based flow has subsided
- Approaches
 - Modal
 - Can be brittle
 - Functional
 - Finding the appropriate relationship (e.g. CxTCP)
 - Beware of self-inflicted loss
 - Minimum delay is unachievable but on some paths full Queue latency may be ‘in budget’ (e.g. LAN).
A way forward

- Combined metrics
- Appropriate filtering
- Cross-layer info
- Adaptable to the application requirements
 - Video:
 - Variable packet sizes
 - differing importance packets
 - bursting
 - Audio: Smaller packet sizes (non MTU sized)
 - Other…